T. Nguyen (co-first author), T. Nguyen (co-first author), D. D. Le, K. Nguyen, A. Tran, R. G. Baraniuk, N. Ho, S. J. Osher. Transformer with a Mixture of Gaussian Keys. Submitted to ICLR, 2022
M. Thorpe (co-first author), T. Nguyen (co-first author), H. Xia (co-first author), T. Strohmer, A. Bertozzi, S. Osher, B. Wang. GRAND++: Graph Neural Diffusion with a Source Term. Submitted to ICLR, 2022.
T. Nguyen, V. Suliafu, S. J. Osher, L. Chen, and B. Wang. FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention. NeurIPS, 2021.
H. Xia, V. Suliafu, H. Ji, T. Nguyen, A. L. Bertozzi, S. J. Osher, and B. Wang. Heavy Ball Neural Ordinary Differential Equations. NeurIPS, 2021.
T. Nguyen, R. G. Baraniuk, A. L Bertozzi, and S. J. Osher. MomentumRNN: Integrating Momentum into Recurrent Neural Networks. NeurIPS, 2020.
B. Wang (co-first author), T. Nguyen (co-first author), A. L Bertozzi, R. G. Baraniuk, and S. J. Osher. Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent. arXiv preprint arXiv:2002.10583, 2020.
Y. Huang, J. Gornet, S. Dai, Z. Yu, T. Nguyen, D. Y. Tsao, A. Anandkumar. Neural Networks with Recurrent Generative Feedback. NeurIPS, 2020.
T. Nguyen, A. Garg, R. G. Baraniuk, A. Anandkumar. InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers. arXiv preprint arXiv:1912.03978, 2019.
T. Nguyen (co-first author), N. Ho (co-first author),A. B. Patel, A. Anandkumar, M. I. Jordan, R. G. Baraniuk. Neural Rendering Model: Joint Generation and Prediction for Semi-Supervised Learning. DeepMath, 2019.
N. Ho, T. Nguyen (co-first author), A. B. Patel, A. Anandkumar, M. I. Jordan, R. G. Baraniuk. The Latent-Dependent Deep Rendering Model. Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, 2018
T. Nguyen, H. Chen, Z. C. Lipton, L. Dirac, S. Soatto, A. Anandkumar. Learning Image Classifiers from (Limited) Real and (Abundant) Synthetic Data. 2018
T. Nguyen, W. Liu, E. Perez, R. G. Baraniuk, and A. B. Patel. Semi-supervised Learning with the Deep Rendering Mixture Model. arXiv preprint arXiv:1612.01942, 2016.
T. Nguyen, W. Liu, F. Sinz, R. G. Baraniuk, A. A. Tolias, X. Pitkow, A. B. Patel. Towards a Cortically Inspired Deep Learning Model: Semi-Supervised Learning, Divisive Normalization, and Synaptic Pruning. Conference on Cognitive Computational Neuroscience (CCN), 2017
A. B. Patel, T. Nguyen, and R. G. Baraniuk. A Probabilistic Framework for Deep Learning. COSYNE 2016, NIPS 2016,
A. B. Patel, T. Nguyen, and R. G. Baraniuk. A Probabilistic Theory of Deep Learning. Workshop on Multiresolution Methods for Large Scale Learning at NIPS, 2015.